Influence of the Carrier on the Interaction of H₂ and CO with Supported Rh ## THEOPHILOS IOANNIDES AND XENOPHON VERYKIOS Institute of Chemical Engineering and High Temperature Chemical Processes, Department of Chemical Engineering, University of Patras, GR-26110 Patras, Greece Received June 5, 1992; revised October 7, 1992 The influence of the carrier (SiO₂, Al₂O₃, and TiO₂) on the interaction of supported Rh with H₂ and CO and on kinetic parameters in CO hydrogenation is investigated employing transient and steady-state techniques. TPD of H₂ revealed two modes of adsorption on Rh/Al₂O₃ and Rh/TiO₂, one of which is activated. This was not observed over Rh/SiO₂. TPD spectra obtained following CO adsorption reveal significant differences, depending on the carrier. Three major states of desorbing CO were detected, one of which desorbs as CO₂ accompanied by H₂ evolution. In Rh/SiO₂ and Rh/ AlsO, the weakly adsorbed CO exhibits peak maximum temperatures in the range 90–100°C, while for the strongly adsorbed CO these are in the range 263-270°C in Rh/SiO₂ and 210-245°C in Rh/ Al₂O₃. In both cases, the CO₂ peak maximum appears in the range 340-355°C. The activity of the catalysts toward CO decomposition was found to decrease in the order: Rh/TiO₂ > Rh/Al₂O₃ > Rh/ SiO₂. This observation has been attributed to the creation of new adsorption sites at the Rh-TiO₂ interface and carrier participation in the process of CO decomposition. The reactivity of adsorbed CO toward hydrogenation, as investigated by TPR experiments, was found to follow the same order as that for CO decomposition. The Rh/TiO₂ catalyst was found to be 15-20 times more active in steady-state CO hydrogenation, as compared to Rh/SiO₂ and Rh/Al₂O₃, and to exhibit lower activation energies for methanation and water-gas shift reactions. (1993 Academic Press, Inc. #### INTRODUCTION The adsorption of H_2 and CO on Group VIII metal surfaces has been the subject of extensive research efforts, since these metals are active catalysts for CO hydrogenation and other CO transformation reactions. It has been shown by many investigators (I-5) that kinetic parameters are frequently influenced by the nature of the carrier employed to disperse the metallic phase. The mechanism of the influence of the carrier on chemisorptive and kinetic parameters is not always well understood. The adsorption of H₂ on Rh(111) surfaces was investigated by Yates *et al.* (6) with TPD techniques. A single H₂ desorption peak was detected, whose maximum was found to vary between 117 and 2°C with increasing surface coverage. Similarly, a single desorption peak, varying between 235 and 165°C with increasing surface coverage, was observed by Efstathiou and Bennett (7) over a 5.2% Rh/Al₂O₃ catalyst. On the other hand, Bertucco and Bennett (8) detected two H₂ desorption peaks from a 10% Rh/SiO₂ catalyst, a major one at 162-167°C and a smaller one at 42°C. Apple et al. (9) detected three desorption peaks from Rh/TiO₂ following a 4-h H₂ adsorption at 300°C, with peak maximum temperatures at 80, 240, and 540°C. These peaks were attributed to H₂ desorption from Rh. Hydrogen desorption from Rh/TiO₂ was also investigated by Stockwell et al. (10), who observed a major desorption peak at approximately 107°C and a broad one between 280 and 430°C, which was attributed to H₂ originating from the carrier, following a spillover process. The adsorption of H₂ on Rh has been found to be a nonactivated process (6-8), while the heat of adsorption at low surface coverages was found to be in the neighborhood of 20 kcal/mol (7, 8) and to decrease significantly with increasing surface coverage. CO adsorbs molecularly on Group VIII metal surfaces (11, 12) in contrast to dissociative adsorption on other transition metal surfaces. It can adsorb in three modes, linear, bridged, and the dicarbonyl mode. CO desorbs from Rh(111) or polycrystalline Rh surfaces following first-order kinetics (12). The TPD spectrum consists of a single peak at 210-260°C (13, 14), while a shoulder peak which often appears to the left of the major peak is attributed to CO adsorbed in the bridged mode. CO dissociation is generally considered to be negligible under ultrahigh vacuum conditions. Similar features have also been observed in TPD spectra over a Rh/ α -Al₂O₃ {0001} catalyst, under ultra-high vacuum conditions (15). Significantly different TPD spectra are observed over Rh dispersed on high-surface-area carriers, in which case both CO and CO₂ are detected to desorb. Over Rh/ Al₂O₃, Efstathiou (16) observed a single CO peak at approximately 190°C and two CO₂ peaks, a major one at 320 and a minor one at 90°C. The low-temperature CO₂ peak was not considered to originate from CO decomposition (Boudouard reaction) but from the interaction of CO with hydroxyl groups of the carrier. TPD spectra over Rh/ Al₂O₃ have also been reported by Oh and Eickel (17), who detected CO desorbing at 230-240°C, and by Erdöhelyi and Solymosi (2), who report a CO peak at 200°C and two CO₂ peaks at 200 and 315°C. Similar features concerning CO desorption were observed by the same authors over Rh/SiO₂ and Rh/TiO₂ catalysts, however, the second CO₂ peak was not observed over Rh/ SiO₂. CO hydrogenation over Rh/Al₂O₃ was investigated using transient isotopic techniques by Efstathiou and Bennett (18), who observed that under reaction conditions the largest fraction of the metallic surface is occupied by CO and a smaller fraction by active and inactive carbon. Hydrogen coverage was observed to be very small. Erdöhelyi and Solymosi (2) report that CO decomposition activity on Rh is affected by the nature of the carrier, decreasing in the order: $TiO_2 > Al_2O_3 > SiO_2 > MgO$. An identical order concerning the rate constants of CO decomposition and hydrogenation of CH_x species is reported by Mori et al. (3). The influence of the support on CO hydrogenation over supported Rh was also investigated by Katzer et al. (19) and Solymosi et al. (20). The former authors observed similar activation energy for CH₄ formation over Rh/SiO₂, Al₂O₃, TiO₂, in the range of 32 kcal/mol, while the latter authors observed the lowest activation energy over Rh/TiO₂ (18.3 kcal/mol) and the highest over Rh/Al₂O₃ (24.0 kcal/mol). In both cases the order of activity was found to be: $Rh/TiO_2 > Rh/Al_2O_3 > Rh/SiO_2$. In terms of selectivity, there is a general agreement that Rh/SiO₂ produces mainly methane, while Rh/TiO₂ produces the largest amount of higher hydrocarbons. The reaction rate constants have been found to depend inversely on metal dispersion (3, 21). The influence of temperature of reduction, primarily as related to the SMSI phenomenon of Rh/TiO₂, has been investigated (22–24). The influence of the carrier on the interaction of H₂ and CO with supported Rh crystallites, as revealed by TPD and TPR studies, and on kinetic parameters in CO hydrogenation under steady-state conditions, is discussed in the present communication. ## **EXPERIMENTAL** (a) Catalyst Preparation and Characterization The carriers employed in the preparation of Rh catalysts are SiO₂ (Alltech Associates), γ-Al₂O₃ (Akzo Chemicals), and TiO₂ (Degussa, P-25), with surface areas of 300, 100, and 50 m²/g, respectively. Catalysts were prepared by the method of incipient wetness impregnation, using RhCl₃ · 3H₂O as the precursor compound for the metal: 60–120 mg of RhCl₃ · 3H₂O were dissolved in 10 ml of distilled water at a temperature of 25°C, then 5–10 g of the carrier were added to the solution under continuous stirring at the same temperature. When the water evaporated, the solid material was dried in an oven at 110°C for 24 h. It was subsequently crashed and sieved in the particle range 0.06-0.25 mm. The crashed and sieved material was placed in a stainless steel tube of 1 cm diameter and it was heated to 200°C at a rate of 5°C/min under N₂ flow (50 cm³/min). It was maintained under these conditions for 1 h to desorb most of the H₂O and the flow was then switched to H₂ (50 cm³/min) to reduce the precursor compound to Rh⁰. It was maintained under H2 flow at 200°C for 1 h and for 1 more hour at 250°C. The catalyst was then slowly cooled to room temperature under N₂ flow and it was stored in airtight vials until further use. The metal content of the catalysts was invariably 0.5 wt%. The metal dispersion of the catalysts was determined by static equilibrium adsorption of H₂ at room temperature. A constant volume high-vacuum apparatus (Micromeritics, Accusorb 2100 E) was used for this purpose. A small quantity of the catalyst (0.5 g) was placed under dynamic vacuum at 200°C for 2 h so as to desorb gases adsorbed on the catalyst surface. The sample was then exposed to H₂ (200 Torr) for 1 h at 250°C and subsequently placed under dynamic vacuum for approximately 10 h. It was then cooled to 25°C, at which temperature hydrogen adsorption isotherms were obtained. For each measurement, equilibrium was assumed when the rate of pressure drop was less than 10⁻³ Torr/min. This normally required 1-5 h. The adsorption isotherm was obtained in the H₂ pressure range 10-300 Torr. The quantity of H₂ adsorbed at monolayer coverage was estimated by extrapolation of the linear portion of the isotherms to zero pressure, which is a standard procedure. The unmetallized supports were found not to adsorb measurable quantities of H₂ under these conditions. # (b) TPD and TPR Experiments The TPD apparatus consists of a flow measuring and switching system, a heated quartz tube in which the catalyst is placed, and the analysis system. The flow system is composed of high precision rotameters and needle valves, 3-, 4-, and 6-way valves and switching valves. Gases can be introduced to the TPD cell in either the continuous flow mode or the pulse mode. Each pulse is 0.05 cm³ (STP) of gas. The TPD cell is a quartz tube of 0.6 cm diameter and 15 cm length. A section at the center of the tube is expanded to 1.2 cm diameter, in which the catalyst
sample, approximately 0.25 g, is placed. A 16" thermocouple well runs through the center of the cell, and a thermocouple is used to determine the temperature at the catalyst bed. The TPD cell is placed in a cylindrical furnace of 2.4 cm diameter which is controlled by a linear temperature programmer (Omega, CN 2010). The heating rate applied in the current study was 23°C/min. The outlet of the cell is connected to a quadrupole mass spectrometer (Sensorlab 200D-VG Quadrupoles) via a heated silica capillary tube of 2 m length with a fast response at 1 atm sampling pressure. The mass spectrometer is connected to a personal computer for instrument control, data acquisition and analysis. The gases used were supplied by L'Air Liquide and were of 99.995% purity. He was further purified by passing it through a heated metallic zirconium trap (Supelco Inc.), CO and O₂ through molecular sieve 5A traps, and H₂ through an Oxysorb and a molecular sieve 5A trap. Prior to any experiments it was determined that the TPD cell or the tubing were not active in the adsorption of H₂ and CO and did not contribute to the mass spectrometer signal. Adsorption on unmetallized carriers was also investigated. The procedure for each experiment was the following: The catalyst, 0.25 g, was placed in the TPD cell, supported by quartz wool, and heated to 200°C in H2 flow for 1 h. It was then cooled in He flow. When the temperature reached 25°C the adsorbing gas, H₂ or CO, was introduced either in the form of continuous flow (30 cm³/min) for 15 min or in the pulse mode. In the latter case, the volume of the pulse was 0.05 cm³ and 5-10 pulses were introduced in each case. The flow was switched to He and the lines were cleaned for 3 min. Temperature programming was then initiated and the TPD spectra were obtained. For high-temperature adsorption of H₂, the catalyst was heated under He flow to the desired temperature, then the flow was switched to H₂ for 15 min and the catalyst was cooled to room temperature under H₂ flow. At the end of each experiment the catalyst was exposed to O₂ at 450°C for 5 min to burn off any carbon deposited, followed by H₂ reduction. This cycle was found to give very reproducible TPD and TPR results. The design of TPD experiments and the selection of experimental parameters was done in such a way as to minimize mass transport effects as well as imperfect mixing in the TPD cell. The criteria proposed by Demmin and Gorte (25) were used for this purpose. The criteria concerning convective lag and diffusive lag are satisfied since the parameter values achieved in the present study are 5×10^{-4} and 3×10^{-5} , respectively, while the proposed criteria require values of less than 0.01 in both cases. Concerning particle concentration gradients and bed concentration gradients, parameter values of 0.1 and 0.3 are estimated, which are comparable to the proposed values of less than 0.05 and 0.1, respectively. It has been shown, however, that for particle concentration gradients a more realistic parameter value would be less than 1.0 (26), while for bed concentration gradients it has been demonstrated that for $Pe_L < 1$ deviations from the CSTR behavior are negligible (27). Readsorption effects can also influence TPD spectra. It has been shown that elimination of readsorption effects in carrier gas TPD experiments over powdered catalysts, in most cases, requires experimental conditions which are not easily achievable (26, 27). In the present study, experimental parameters (mass of catalyst and carrier gas flow rate) were selected so as to reduce, to the extent possible, readsorption effects, within the detectability limits of the mass spectrometer. Readsorption effects are expected to be similar in the catalysts employed in the present study since their structure is not significantly different. # (c) Steady-state Kinetic Measurements The apparatus employed for measurements of kinetic parameters in CO hydrogenation consists of a flow measuring and control system, a tubular reactor and an online analytical system. Feed flow rates were measured and controlled by thermal mass flow meters (MKS Instruments). The reactor is a 1-cm-I.D. stainless steel U-shaped tube, immersed in a constant temperature fluidized sand bath (Techne SBL-2D) for attainment of isothermal conditions. One of the legs of the reactor was filled with α -Al₂O₃ pellets and was used to preheat the feed mixture. The catalyst bed was placed in the other leg of the reactor, through which a $\frac{1}{8}$ " thermocouple well run along its length. The catalyst was in the form of particles of diameter between 0.125 and 0.250 mm. This size of catalyst particles was found experimentally not to offer any measurable intraparticle resistance in the transport of mass and heat. Temperature along the length of the catalyst bed was found to be constant within $\pm 1^{\circ}$ C. Analysis of the feed and of the reaction mixtures was achieved by a gas chromatograph connected on-line to the reactor apparatus via a gas sampling valve. Two chromatographic columns were used for the separation of gas mixtures. A Carbosieve S-II 100/120 column was used to separate H₂, N₂, CO, CH₄, and CO₂, and it was connected to the TC detector. A Porapak QS 80/100 column was used to separate the hydrocarbons and it was connected to the FI detector. In all cases the reactor was operated in the differential mode, with CO conversions less than 5%. The CO/ H_2 reaction was investigated in the temperature range of 170 to 250°C. The feed consisted of 24% H_2 , 8% #### RESULTS AND DISCUSSION The supported Rh catalyst employed in the present investigation were characterized in terms of their degree of dispersion by selective equilibrium H₂ adsorption at room temperature. The volume of H₂ adsorbed at monolayer coverage was used to estimate the H/Rh ratio (atoms of hydrogen adsorbed per Rh atom in the catalyst) assuming dissociative adsorption and 1-to-1 stoichiometry. The H/Rh ratios thus estimated were found to be 1.29 for Rh/SiO₂, 1.0 for Rh/Al₂O₃, and 0.70 for Rh/TiO₂, indicating that all catalysts had a very high metal dispersion. The surface-mean diameter of the supported Rh crystallites, assuming that they are semispherical, is estimated to be between 10 and 15 Å. # (a) The Interaction of H_2 with Rh/Al_2O_3 , SiO_2 , and TiO_2 TPD spectra of H₂ adsorbed on 0.5% Rh/ SiO₂, Al₂O₃, and TiO₂ catalysts at temperatures of 25, 120, and 190°C were obtained following the procedures described earlier. Identical experiments were also carried out with unmetallized carriers from which no H₂ desorption was observed under any conditions. TPD spectra obtained with the 0.5% Rh/SiO₂ catalyst after H₂ adsorption at three temperatures are shown in Fig. 1A. The spectra consist of a major peak at 75°C which is shifted to approximately 103°C when adsorption takes place at 190°C. Two minor shoulder peaks may be distinguished to the right of the major peak, at approximately 110 and 200-250°C. Bertucco and Bennett (8) observed a single desorption peak at 175°C from a 10% Rh/SiO₂ catalyst, under a heating rate of 0.6°C/s, which is considerably higher than that employed in FIG. 1. TPD of H_2 from 0.5% Rh/SiO₂ (A), 0.5% Rh/Al₂O₃ (B), and 0.5% Rh/TiO₂ (C), following H_2 adsorption at 190°C (a), 120°C (b), and 25°C (c). the present study (0.38°C/s). It is well known that desorption peak temperature is shifted to higher values with increasing heating rate (28, 29). Thus, the results of this study are in qualitative agreement with those of Bertucco and Bennett (8), especially if the fact that the dispersion of the two catalysts was widely different (0.35 versus 1) is taken into account. Corresponding spectra obtained over the 0.5% Rh/Al₂O₃ catalyst are shown in Fig. 1B, in which two desorption peaks are evident. One has a peak maximum at 90°C and is not significantly shifted with adsorption temperature. The second peak increases in intensity with increasing temperature of adsorption, while its maximum is shifted from approximately 160 to 195°C. Efstathiou and Bennett (7) report a single peak at 165–235°C depending on surface coverages. Their catalyst, however, had significantly lower Rh dispersion than that of the catalyst employed in the present study (0.12 versus 1.0). TPD spectra of H₂ desorbing from the Rh/TiO₂ catalyst are shown in Fig. 1C. The low-temperature adsorption spectrum consists of a single peak at 70-80°C. However, at the higher adsorption temperatures a second peak appears at approximately 160°C. A very small peak is also observed in the neighborhood of 250–300°C. The quantity of H₂ desorbed increases significantly with increasing temperature of adsorption, indicating that H₂ adsorption on Rh/TiO₂ is an activated process. The peaks at 80 and 160°C are in relatively good agreement with those observed by Apple et al. (9) at 80 and 240°C, after H₂ adsorption at 300°C for 4 h. Under these conditions they also observed a third peak at 540°C which they attributed to H₂ spillover. Stockwell et al. (10) report a single peak at 107°C which could correspond to the 80°C peak observed in the present study. A common feature of Rh dispersed on Al₂O₃ and TiO₂ carriers is the appearance of two peaks of desorbed H₂, which could be viewed to correspond to two modes of adsorbed hydrogen with different adsorption bonds. The TPD spectrum over Rh(111) crystals exhibits a single peak only, which may correspond to the low-temperature peak (70–100°C) observed in the Rh/SiO₂, Al₂O₃, and TiO₂ catalysts. The high-temperature peak (160–190°C) which corresponds to strongly adsorbed H₂ and possibly to activated adsorption could be due to the creation of new adsorption sites on the surface of the small Rh crystallites, which is expected to have more defects than the Rh(111) surface. It is also conceivable that the new adsorption sites are created at the metal-support interface. The concentration of these sites would
be expected to increase with increased dispersion of the metal. This could be the reason why the second desorption peak has not been observed over catalysts with low Rh dispersion. Peak temperatures of desorption are shown in Table 1 for the three catalysts investigated and the three H₂ adsorption temperatures. When the adsorption takes place at 25°C, the peak temperature does not seem to be influenced by the carrier. However, a tendency to shift peak temperatures toward higher values is observed at higher adsorption temperatures. This shift cannot be explained assuming that the surface coverage increases at higher adsorption temperatures, since the exact opposite behavior is expected in that case, i.e., shift of the peaks toward lower temperatures, as expected for second-order desorption with or without readsorption phenomena (27). Thus, this shift toward higher temperatures of desorption must be attributed to stronger Rh-H adsorption bonds when H₂ interacts with Rh surfaces at elevated temperature. It is also apparent that the second H₂ desorption peak appears only when adsorption has taken place at high temperatures. This peak corresponds to strongly adsorbed TABLE 1 Peak Temperatures of Hydrogen Desorption from Supported Rh Catalysts | Catalyst
Rh/ | T_{M} (°C) | | | | | | |------------------|--------------------------------|---------|----------|--|--|--| | KII/ | $T_{\rm a} = 25^{\circ} \rm C$ | =120°C | =190°C | | | | | SiO ₂ | 75 | 75 | 103 | | | | | Al_2O_3 | 80 | 87, 159 | 100, 192 | | | | | TiO ₂ | 71 | 80, 155 | 81, 160 | | | | | | | | | | | | Note. T_a is adsorption temperature; T_M is peak temperature. TABLE 2 Quantity of H₂ Desorbed from Rh/SiO₂, Al₂O₃, and TiO₂ Catalysts after Adsorption at Different Temperatures | Catalyst
Rh/ | Volume | Volume of H ₂ desorbed (cm ³ /g) | | | | |--------------------------------|----------------------------|--|---------|-------------------------------|--| | | $T_a = 25^{\circ}\text{C}$ | =120°C | = 190°C | at equilibrium (25°C) (cm³/g) | | | SíO ₂ | 0.44 | 0.46 | 0.54 | 0.70 | | | Al ₂ O ₃ | 0.42 | 0.51 | 0.55 | 0.54 | | | TiO ₂ | 0.15 | 0.28 | 0.36 | 0.28 | | hydrogen whose adsorption process is an activated one. The quantity of H₂ desorbing from the 0.5% Rh catalysts is shown in Table 2, along with the quantity of H2 found to adsorb on the same catalysts in static equilibrium chemisorption experiments at 25°C. In the Rh/Al₂O₃ and Rh/SiO₂ catalysts the quantity of H₂ desorbing is weakly affected by the temperature of adsorption, indicating that the process over these catalysts is only slightly activated, in agreement with results of other investigators (7, 8). In the Rh/TiO₂ catalyst, however, the quantity of desorbing H2 increases significantly with increasing adsorption temperature, which might indicate that over this catalyst the H₂ adsorption process is an activated one. Activated H₂ chemisorption on supported metal catalysts has also been reported by other investigators (30). In addition to creation of new, high-energy adsorption sites on the small Rh crystallites, the phenomenon has also been attributed to the presence of surface contaminants or to decoration of the metal with oxide species originating from the support. In the present investigation the decoration effect can be rejected since the temperature of H₂ adsorption was always less than 200°C. To test whether surface contamination, primarily C1 from the metal precursor compound, contributes to H₂ adsorption at high temperature, the Rh/Al₂O₃ catalyst was reduced at 450°C, instead of the usual 200/250°C temperature, and H₂ TPD experiments were conducted following H₂ adsorption at 25, 120, and 190°C. The TPD spectra which were obtained with this catalyst were identical to the spectra obtained with the same catalyst reduced at the lower temperature. This result indicates that surface contamination is not a probable cause of the enhancement of H₂ adsorption of the Rh/TiO₂ catalyst at elevated temperatures. Thus, the most plausible causes are those stated earlier. defect sites on surfaces of small Rh crystallites or creation of new adsorption sites at the metal-support interface. The quantity of H₂ observed to desorb after adsorption at 25°C is smaller than the quantity of H₂ adsorbed at equilibrium at the same temperature. This could be due to either of two reasons: The static chemisorption measurements are equilibrium ones and have been obtained after adsorption times which exceed 10 h. On the other hand, the adsorption prior to TPD takes place under H₂ flow for only 0.5 h, time which might not be sufficient to reach equilibrium. A second reason might be that a portion of adsorbed H₂ desorbs prior to initiation of the TPD experiment, while the sample is flushed with He for 3 to 5 min to remove gas phase H₂ and to clean the lines. This reasoning, combined with the observation that H₂ seems to be adsorbed stronger at higher adsorption temperatures might explain the observed increase of the amount of H₂ adsorbed over the Rh/TiO₂ catalyst with increasing temperature. Thus, a smaller fraction of the H₂ adsorbed at higher temperatures desorbs prior to initiation of the TPD experiment. A study of H₂ adsorption on Rh(111) has shown that adsorption and desorption proceed via an intermediate step during which a precursor state of adsorbed hydrogen is formed (6). If the same applies in the case of the supported Rh crystallites, then it can be assumed that the two forms of adsorbed hydrogen originate in this precursor state and the transfer from the precursor state to the strongly adsorbed state is an activated process. For this reason, the strongly adsorbed state appears only at high temperatures. # (b) The Interaction of CO with Rh/SiO₂, Al₂O₃, and TiO₂ TPD spectra of CO over the Rh/SiO₂, Al₂O₃, and TiO₂ catalysts were obtained after CO adsorption at room temperature. The molecules detected to desorb were CO, CO₂, H₂ and CH₄. The adsorption of CO was also investigated on the unmetalized carriers. Over SiO₂, only traces of CO₂ were observed at temperatures higher than 450°C, after CO adsorption at 25°C for 15 min. The spectrum obtained over Al₂O₃ consisted of CO₂ only, in the temperature range 200-300°C. The quantity of CO₂ desorbed was found to be approximately 0.05 cm³/g. CO₂ was also the only species observed to desorb after 15 min exposure of TiO₂ to CO at 25°C. CO₂ was observed to desorb in the temperature range of 50 to 200°C with a peak at 80°C, and its quantity was approximately 0.03 cm³/g. These quantities of CO₂ correspond to 4–5% of quantities detected from the corresponding Rhsupported catalysts. The CO₂ in the TPD spectra of the Al₂O₃ and TiO₂ carriers probably originates from either the oxidation of CO by some oxidizing centers on the carrier surfaces or from formate/bicarbonate decomposition. The latter groups have been observed spectroscopically on Al₂O₃ and TiO₂, but not on SiO₂ (31). The interaction of CO with the surface could proceed via oxygen anions, according to the reaction $$CO + O_2^- \rightarrow CO_2 + V_{O^2} + 2e^-, (1)$$ where V_{O^2} corresponds to an anionic vacancy and e^- to a quasi-free electron. Formate decomposition is not a probable source, since no H_2 was detected. Based on the quantity of CO_2 which was observed, the quantity of H_2 expected from formate decomposition would be within the detectability limits of the mass spectrometer. Thus, the most probable sources of CO_2 are Ftg. 2. TPD of CO from 0.5% Rh/SiO₂ catalyst following adsorption in the pulse (a) or continuous flow (b) modes at 25°C. bicarbonate decomposition and/or oxidation of adsorbed CO. TPD spectra of CO adsorbed on 0.5% Rh/SiO₂, either in the pulse mode or in the continuous flow mode for 15 min, are shown in Fig. 2. CO desorbs in the temperature range 40–350°C with two distinct peaks at 90–105°C and 260–270°C. CO₂ appears at temperatures higher than 300°C in the form of a broad peak. The appearance of CO₂ is accompanied by H₂ desorption. The H₂ peak is identical in shape and position to that of CO₂, which implies that both species have a common origin, which could be the reaction $$CO(a) + H_2O \rightarrow CO_2 + H_2,$$ (2) The effects of gaseous H₂O on CO TPD from Ru/Al₂O₃ catalysts have been demonstrated by Fujimoto *et al.* (32). In the present study, however, as indicated in the Experimental section, particular attention was paid to purify the gases used in these experiments so as to eliminate side reactions such as Eq. (2). Furthermore, the stoichiometry of Eq. (2) implies equal quanti- ties of CO₂ and H₂ produced, which is not the case in the spectra of Fig. 2. The most probable origin of CO₂ and H₂ is the interaction of adsorbed CO on the Rh surface with surface hydroxyl groups of the carrier, according to $$CO(a) + OH_{(S)} \rightarrow (COOH)_{(a)} \rightarrow CO_2 + \frac{1}{2}H_2.$$ (3) Indeed, the quantity of H₂ observed in the TPD spectrum is approximately half that of CO_2 . As shown in Fig. 2, the quantity of CO₂ produced after pulse CO adsorption or adsorption under continuous CO flow for 15 min, is practically the same. This implies that CO2 originates from strongly adsorbed CO on the Rh surface. The CO spectra, corresponding to the two different modes of adsorption (pulse and continuous flow), differ in the intensity of the first peak, whose maximum is at 105°C after pulse adsorption and 91°C after continuous flow adsorption. The shift is probably due to higher surface coverages achieved in the continuous flow mode of adsorption. A comparison of the two spectra indicates that the adsorption of CO is rapid and a few (2-3) pulses are sufficient to cover most of the Rh surface. Initially, the sites which correspond to strongly adsorbed CO are occupied while, at longer adsorption times the quantity of weakly adsorbed CO increases. TPD spectra observed over the Rh/Al₂O₃ catalyst after CO adsorption in the
pulse or the continuous flow mode are shown in Fig. 3. The CO spectrum consists of two main peaks at approximately 100 and 220–240°C. The CO₂ spectrum consists of a major peak at 330-350°C and of a smaller peak at 180°C. The high-temperature CO₂ peak is accompanied by an H2 peak of the same shape and at the same position. Small quantities of CH₄ were also observed in the same temperature range, originating from the hydrogenation of CO. For the latter, the source of H₂ is likely that obtained from reaction (3). The CO₂ peak at 180°C which Fig. 3. TPD of CO from 0.5% Rh/Al₂O₃ catalyst following adsorption in the pulse (a) or continuous flow (b) modes at 25°C. is not accompanied by H₂ desorption is attributed in its largest part to the decomposition of CO on the Rh surface (Boudouard reaction) (16, 18). The quantity of weakly adsorbed CO which desorbs at low temperatures is enhanced in the continuous flow adsorption mode. The TPD spectra which were obtained over the Rh/Al₂O₃ catalyst are in good agreement with results obtained by other investigators (2, 16, 17). In a different experiment, the Rh/Al₂O₃ catalyst was heated to 450°C under He flow and then cooled to room temperature under He flow prior to CO adsorption. The TPD spectra obtained are shown in Fig. 4, and they differ substantially from the spectra of Fig. 3. Heating of the catalyst under He results in partial dehydroxylation of the carrier surface. This gives rise to the ap- Fig. 4. TPD of CO from 0.5% Rh/Al₂O₃ catalyst, heated to 450°C under He flow, prior to CO adsorption at 25°C. pearance of CO in the temperature range in which CO₂ appeared previously. Thus, CO₂ does indeed originate from strongly adsorbed CO which, as it desorbs interacts with surface hydroxyl groups of the carrier to produce CO₂ and H₂. The degree of this interaction and the quantity of CO2 produced depends on the degree of hydroxylation of the surface. Thus the role of the metal in this process is to retain CO on the catalyst surface up to fairly high temperatures, where it is more likely to react with hydroxyl groups. Similar quantities of surface carbonates could probably be generated on metal-free carriers by CO exposure at the elevated temperatures encountered during TPD. An additional role of the metal could be the creation of surface hydroxyls from spillover hydrogen during the reduction step. The TPD spectra obtained over the Rh/TiO₂ catalyst, after CO adsorption either in the pulse mode or in the continuous flow mode are shown in Fig. 5. The CO spectrum consists of a major peak at 145°C and two smaller peaks at 62 and 225–245°C. The CO₂ spectrum consists of three peaks at approximately 75, 150, and 270°C. The first CO peak originates from the carrier, since it was also observed in a similar experiment with unmetalized TiO₂. The peak at 270°C is accompanied by H₂ and CH₄ desorption indicating that this CO₂ originates in the interaction between CO and surface hydroxyl groups, as in the cases of Rh/SiO₂ and Rh/Al₂O₃. The 150°C peak is not accompanied by H₂ desorption, and it is at the same position with the main CO peak. This CO₂ must originate from the surface decomposition of CO according to $$CO_{(a)} + CO_{(a)} \rightarrow C_{(a)} + CO_2.$$ (4) Two types of experiments were conducted in order to test the validity of reaction (4). In the first experiment, upon completion of the TPD run the catalyst was maintained at 400°C and the feed was switched from He (carrier gas) to 10% O₂ in He in order to titrate the carbon left on the surface during the TPD experiment. A sharp CO₂ peak was obtained and the quantity of CO₂ produced was found to be only 15% larger than the quantity of CO₂ which Ftg. 5. TPD of CO from 0.5% Rh/TiO₂ catalyst, following adsorption in the pulse (a) or continuous flow (b) modes at 25°C. corresponds to the peak at 150°C. This material balance satisfies the stoichiometry of reaction (4), strongly suggesting that the CO₂ peak at 150°C arises from the Boudouard reaction. The excess 15% CO₂ could originate from carbon associated with the higher temperature CO₂ peak. A second experiment was conducted in order to test whether removal of oxygen from the TiO₂ surface participates in CO₂ production, since it has been suggested by Paul et al. (33) that adsorbed CO reduces a portion of Ti⁺⁴ cations to Ti⁺³ and desorbs as CO₂. In this experiment the Rh/TiO₂ catalyst was exposed to ¹⁸O₂ at 600°C for 5 min, causing an appreciable isotope exchange in TiO₂. CO was subsequently adsorbed on this sample at 25°C and the TPD experiment was conducted in the usual manner. No CO₂ containing labeled oxygen was detected to desorb, indicating that surface lattice oxygen of TiO₂ does not participate in CO₂ production. The discrepancy between this result and that of Paul et al. (33) might be due to the fact that in the present study the catalysts are reduced under H₂ flow at 200°C prior to CO adsorption and initiation of TPD. This treatment might be expected to already reduce the portion of the TiO₂ surface around the Rh particles, thus prohibiting further reduction by CO. It must also be noted that, as shown in Fig. 5, only a small fraction of the metallic surface is covered upon pulse adsorption, corresponding to the strongly adsorbed state, while the main CO peak at 145°C appears only after adsorption in the continuous flow mode. In contrast, in the Rh/SiO₂ and Rh/Al₂O₃ catalysts, pulse adsorption was sufficient to cover the largest fraction of the metallic surface. The appearance of CO_2 and H_2 in the spectra has been attributed to the interaction of adsorbed CO with hydroxyl groups of the surface of the carrier. It is not clear whether this interaction takes place during CO adsorption or during CO desorption, as CO diffuses through the porous structure of the catalysts. The fact, however, that the quantity of CO₂ produced is not significantly affected by time of adsorption of CO (see Table 3) and the fact that very small quantities of CO₂ were detected to desorb from the unmetalized carriers lead to the conclusion that CO₂ originates from CO strongly adsorbed to the metallic surface. Thus, the interaction of CO with the surface hydroxyl groups occurs upon desorption of CO, as it diffuses through the particles. On the basis of this reasoning, it can be concluded that the position of the CO₂ peak reflects the strength of the adsorption of CO from which CO2 originates. A comparison of the TPD spectra obtained after CO adsorption on Rh/SiO₂, Al₂O₃, and TiO₂ (Figs. 3–5) reveals signifi- TABLE 3 Peak Temperatures of TPD Spectra of CO from Rh/SiO₂, Al₂O₃, TiO₂, and Quantities of Species Desorbed | Catalyst
Rh/ | Adsorption mode | T _M (°C) | | Quantities detected (cm ³ /g) | | | |------------------|-----------------|---------------------|-----------------|--|-----------------|----------------| | | | CO | CO ₂ | CO | CO ₂ | H ₂ | | SiO ₂ | Pulse | 104, 263 | 350 | 0.33 | 0.26 | 0.15 | | | Continuous | 91, 270 | 340 | 0.45 | 0.26 | 0.14 | | Al_2O_3 | Pulse | 245 | 355 | 0.52 | 0.50 | 0.30 | | | Continuous | 100, 210 | 1804, 340 | 0.56 | 0.60 | 0.30 | | TiO ₂ | Pulse | 230 | 120°, 267 | 0.07 | 0.40 | 0.12 | | | Continuous | 62, 145, 245 | 80°, 150, 275 | 0.18 | 0.56 | 0.15 | ^a Corresponds to desorption from the carrier. cant differences, depending on the carrier employed to disperse the Rh crystallites. The desorption from the Rh/TiO₂ catalyst is completed at lower temperatures, as compared to that of Rh/SiO₂ and Rh/Al₂O₃. No CO decomposition was observed in the Rh/ SiO₂ catalyst, in contrast to Rh/Al₂O₃ and Rh/TiO₂. CO decomposition is manifested in the CO₂ desorption peaks at 180 and 150°C, for Rh/Al₂O₃ and Rh/TiO₂, respectively. The activity of these catalysts towards CO decomposition seems to decrease in the order: $Rh/TiO_2 > Rh/Al_2O_3 >$ Rh/SiO₂. It must also be emphasized that CO decomposition is not directly related to the strength of the CO adsorption bond. This is apparent in Fig. 2, which shows that strongly adsorbed CO on Rh/SiO₂ desorbs at approximately 270°C without decomposition (no CO₂ production) while weakly adsorbed CO on Rh/TiO₂ desorbs at 145°C (Fig. 5) decomposes to an appreciable extent. These results indicate that the nature of the carrier influences the state of CO adsorbed on Rh crystallites. It has been observed (11-14) that CO does not decompose over Rh(111) or unsupported polycrystalline Rh surfaces. The same was observed in the present study for Rh/SiO₂. SiO₂ is generally considered to be one of the most inert carriers. However, when Rh is dispersed over TiO₂ its properties toward CO decomposition are altered. This phenomenon could be explained assuming that TiO2 influences the morphology of the Rh crystallites. This explanation, however, is not very plausible since it has been shown that the crystallographic orientation of Rh surfaces does not influence the mode of CO adsorption (15). Another explanation could be that an electronic interaction develops at the Rh-TiO₂ interface, which influences the electronic structure of Rh and consequently the mode of CO adsorption. The effects of variation of electronic properties of TiO₂ carriers on CO dissociation and hydrogenation have been examined by Solymosi et al. (34), who demonstrated that variation of the electron density of TiO₂ influences the rate of these processes. This hypothesis, however, cannot explain why the decomposition of CO is not dependent on the strength of its adsorption on the metallic surface. The most plausible explanation is that new adsorption sites are created at the metal-support interface and the carrier participates or assists the process of CO decomposition or the reaction between produced carbon and surface oxygen species towards CO₂. This hypothesis can explain the observation that the decomposition of CO is not directly related to the strength of its adsorption, since the mechanism of the decomposition is viewed to be altered by
participation of the TiO₂ carrier. Generally, the ease of dissociation is not related with the heat of adsorption of CO (35, 36) or to the coordination of CO to the surface. Two factors must be taken into consideration in order to examine the dissociation probability: (a) The intensity of backbonding from the metal to the CO molecule, and (b) the bond strength of the atomic components of the Rh surface. It should be also noted that there is a rather poor correlation between the extent of backbonding and the adsorption strength of CO (36), because the 5σ -metal bond as well as the metal work function play an important role. Thus, based on the above, the observation that the CO dissociation on Rh/ TiO₂ corresponds to a weak form of adsorbed CO, is not at all strange. The concept of creation of new sites at the Rh-TiO₂ interface relates to factor (b) above if it is assumed that CO can be tilted with the O atom toward TiO₂, providing another easier pathway towards dissociation. Peak temperatures of the TPD spectra of CO from Rh/SiO₂, Al₂O₃, TiO₂ are summarized in Table 3, along with the quantities of the species desorbed. Three major states of desorbing CO were detected, of which one desorbs as CO₂ accompanied by H₂ evolution. In the Rh/SiO₂ and Rh/Al₂O₃ catalysts, the weakly adsorbed CO exhibits peak temperatures in the range 90–100°C, while the strongly adsorbed CO appears at 263–270°C in Rh/SiO₂ and at 210–245°C in Rh/Al₂O₃. A weakening in the strength of adsorption of this adsorbed state over Rh/Al₂O₃ is therefore indicated. In both cases CO₂ appears in the range 340–355°C. A significant shift in the CO₂ peak toward lower temperatures (267–275°C) is observed over Rh/TiO₂. The CO spectrum over Rh/TiO₂ is significantly different than that over the other catalysts, and the peaks cannot be correlated with certainty. The quantities of CO, CO₂ and H₂ detected to desorb are also reported in Table 3. CH₄ is not included since it accounts for less than 1% of CO desorbed. It is apparent that a major fraction of adsorbed CO desorbs as CO₂. In the Rh/Al₂O₃ and Rh/TiO₂ catalysts, CO₂ originates from (a) desorption from the carrier, approximately 8% in the case of Rh/Al₂O₃ and 5% in the case of Rh/TiO₂, (b) from CO decomposition, and (c) from reaction between CO and surface hydroxyl groups. In the case of Rh/SiO₂, CO₂ originates exclusively from reaction of CO with surface hydroxyls. The quantity of CO desorbed can be utilized to estimate the CO/Rh ratio in the catalysts. Using the CO adsorbed after continuous flow adsorption, the CO/Rh ratio for the Rh/SiO₂ catalyst in approximately 0.7, for Rh/Al₂O₃ approximately 1.1, and for Rh/TiO₂, 0.6. The dispersion of the catalysts, as obtained by static equilibrium adsorption of H₂ is 1 for Rh/SiO₂ and Rh/Al₂O₃, and 0.7 for Rh/TiO₂. # (c) Temperature-Programmed Reaction of Adsorbed CO with H₂ The reactivity of CO adsorbed on Rh crystallites dispersed on SiO₂, Al₂O₃, or TiO₂ carriers was investigated by TPR of adsorbed CO with H₂. In these experiments, CO was adsorbed at room temperature under continuous flow for 15 min. The flow was subsequently switched to He for 3 min to purge the gas phase of the reactor from CO and to clean the lines. The flow was then switched to H₂ and temperature programming was initiated at a rate of 23°C/ min. The main products of reaction of H₂ with adsorbed CO are CH₄ and H₂O. In addition to these products, in the case of Rh/SiO₂ catalyst, CO was also observed to desorb unreacted with a peak at approximately 90°C which corresponds to the peak at 91–105°C of the TPD spectrum of the same catalyst. In the TPR spectra of the other two catalysts, no CO was observed to desorb in measurable quantities. The CH₄ TPR spectra of the three catalysts investigated are shown in Fig. 6. Over the Rh/SiO₂ catalyst, CH₄ appears at approximately 80°C, while the peak temperature is at 230°C and CH₄ production is completed at 270°C. Over the Rh/Al₂O₃ catalyst, CH₄ production is initiated at approximately 100°C, while the peak maximum is at 200°C and the reaction is completed at approximately 260°C. Over the Rh/TiO₂ catalyst, CH₄ appears at approximately 65°C, while peak maximum is at 120°C and the reaction is completed at 180°C. It is apparent that the shape and the position of the CH₄ peak in the temperature scale are a strong function of the carrier FIG. 6. TPR of adsorbed CO under H₂ flow over 0.5% Rh/SiO₂ (a), 0.5% Rh/Al₂O₃ (b), and 0.5% Rh/TiO₂ (c) catalysts. CO was adsorbed at 25°C with the continuous flow mode. employed to disperse the Rh crystallites. The activity for hydrogenation of the adsorbed CO follows the order: Rh/TiO₂ >> Rh/Al₂O₃ >> Rh/SiO₂. These results are in good agreement with the results of Fujimoto *et al.* (32), who observed a single methane peak over Rh/SiO₂ at 222°C, and at 147°C over Rh/Al₂O₃. Their heating rate, however, was significantly lower than that of the present study (7 vs 23°C/min). It has been established that high heating rates shift the peak temperatures towards higher values (28, 29). Efstathiou (16) also observed a single peak over Rh/Al₂O₃ at 220°C, with a heating rate of 30°C/min. Recently, Falconer and co-workers conducted extensive TPR studies of CO adsorbed on Pd (37), Pt (38) and Ni (39–41) dispersed on various carriers. They demonstrated the existence of two distinct CH₄ formation pathways, one involving the direct hydrogenation of CO adsorbed on the metal and one involving conversion of metal-adsorbed CO to support-bound methoxy which is subsequently hydrogenated to CH₄. The second path was found to depend on the support and to be important for Al₂O₃ and TiO₂ supported catalysts but not for SiO₂ supported catalysts. In Ni/ Al₂O₃ and Ni/TiO₂ catalysts, for example, two CH₄ peaks were observed; the lowtemperature one was attributed to hydrogenation of CO bound to Ni and the hightemperature one to hydrogenation of the CH₃O-species. The single TPR peak observed in the present study, in most probability, is due to direct hydrogenation of metal-bound CO for the following reasons: (a) the conditions of the present TPR experiments were the least favorable for CH₃O formation, since CO adsorption was conducted at low temperature and the reactor was cleaned with He flow prior to initiation of temperature programming under H₂ flow. Falconer and co-workers (39-41) observed an extremely weak CH₃O \rightarrow CH₄ peak when CO adsorption was conducted at room temperature on Ni/TiO₂. (b) It was demonstrated that CH₃O formation does not take place on SiO₂-supported catalysts. Therefore, the peak observed in the present study over the Rh/SiO₂ catalyst must arise from hydrogenation of CO bound to Rh. (c) the CH₄ peak over Rh/TiO₂ was observed at 120°C, while Falconer and co-workers observed $CH_3O \rightarrow CH_4$ peaks over Ni/TiO₂ at 251°C, and over Pt/TiO₂ at approximately 230°C, with a heating rate of 60°C/min, which shifted to 190°C under a heating rate of 6°C/ min. Over Rh/Al₂O₃, in the present study, the CH₄ peak was observed at 200°C while Falconer and co-workers observed the $CH_3O \rightarrow CH_4$ peaks at 272°C over Pd/Al₂O₃ and at 267°C over Ni/Al₂O₃. Thus, the peak temperatures observed in the present study are significantly lower than those assigned to the $CH_3O \rightarrow CH_4$ process, even taking into account the different heating rates employed. It should be noted that the energetics of this CH₄ formation process were found to be sensitive to the carrier employed and not to the particular metal. # (d) Steady-State CO Hydrogenation The influence of the carrier on kinetic parameters in CO hydrogenation was also investigated employing the Rh/SiO₂, Al₂O₃, and TiO₂ catalysts. Kinetic results in terms of turnover frequencies of CO consumption, methanation and water-gas shift reactions are summarized in Table 4, along with the activation energies of the two reaction routes. The kinetic experiments were conducted at 210°C with a feed H₂/CO ratio of 3. Activation energies were determined in the temperature range of 170–250°C. The Rh/TiO₂ catalyst is 15–20 times more active than the Rh/SiO₂ and Rh/Al₂O₃ catalysts, which exhibit comparable activity at 210°C. The apparent activation energies are in the range 25-30 kcal/mol. The highest activation energy is exhibited by the Rh/SiO₂ catalyst, for both reaction paths. The apparent activation energies observed over Rh/TiO₂ are approximately 5 kcal/mol lower than those observed over Rh/SiO₂. The product distribution obtained over the various cata- TABLE 4 Steady-State Kinetic Results of CO Hydrogenation over Rh/SiO₂, Al₂O₃, and TiO₂ Catalysts ($T = 210^{\circ}$ C, H₂/CO = 3) | Catalyst
Rh/ | $N_{ m CH_4}$ | N_{CO_2} $(s^{-1} \times 10^3)$ | $N_{\rm CO}$ | $E_{ m CH_4}$ | Eco | |------------------|---------------|--|--------------|---------------|-------| | | | | | (kcal | /mol) | | SiO ₂ | 0.06 | 0 | 0.07 | 30.5 | 29.7 | | Al_2O_3 | 0.07 | 0.02 | 0.15 | 27.0 | 24.6 | | TiO_2 | 1.2 | 0.2 | 2.5 | 26.0 | 25.0 | lysts under the same reaction conditions is shown in Table 5. The Rh/SiO₂ catalyst exhibits the lowest selectivity towards higher hydrocarbons while the Rh/TiO₂ the highest. Furthermore, essentially no CO₂ was observed over the Rh/SiO₂ catalyst, in contrast to the other catalysts, as indicated in Table 4. The steady-state activity and selectivity results are in good agreement with results reported by other investigators (18–20, 42–44). The TPD and TPR results discussed in previous sections can assist in understanding the steady-state behavior of the catalysts under CO hydrogenation conditions. The H₂ TPR of adsorbed CO reveal that the activity of adsorbed CO toward hydrogenation to CH₄ is in good agreement to the activity observed under steady-state conditions. Correlating the activity of adsorbed CO to its adsorption characteristics, as revealed from TPD experiments, it can be seen that activity increases with the ease
of dissociation of the adsorbed CO. TABLE 5 Product Distribution Observed over the Rh/SiO₂, Al₂O₃, and TiO₂ Catalysts under CO Hydrogenation at 210°C | Catalyst
Rh/ | Selectivity (mol%) | | | | | | | | | |--------------------------------|--------------------|-------|-------------------------------|-----|-----|-----|-----|----------------|-------| | KII/ | | | C ₂ H ₆ | | | | | C ₆ | C_7 | | SiO ₂ | 95.2 | < 0.1 | 2.7 | 0.3 | 1.0 | 0.5 | 0.2 | _ | | | Al ₂ O ₃ | 79.2 | 0.9 | 5.7 | 5.9 | | | 1.5 | | _ | | TiO_2 | 80.5 | 0.8 | 0.8 | 5.6 | 0.3 | 6.1 | 2.4 | 1.6 | 1.1 | The following mechanistic picture can be visualized, based on these observations: A basic reaction step is the dissociation of adsorbed CO toward atomic C. Rh/SiO₂, on which CO dissociation is negligible, is the least active catalyst, exhibiting the highest activation energy which reflects the high activation barrier for dissociation and the large heat of adsorption of CO. Selectivity toward CH₄, exhibited by this catalyst, is high because of low surface coverage of active C. Rh/Al₂O₃ and especially Rh/TiO₂ exhibit higher activity due to enhanced CO dissociation. Activation energies are also lower over these catalysts, corresponding to lower activation barriers for CO dissociation. The nature of the Rh-support interaction which influences the adsorptive and catalytic behavior of Rh is not well understood. Phenomena related to SMSI, such as decoration of Rh particles with reduced TiO_x species cannot have taken place in the present study since the catalyst was never exposed to a temperature higher than 250°C. While the TiO₂ surface can be reduced from spillover atomic hydrogen adsorbed on Rh, the migration of TiO_x species is an activated process and is probably negligible at these low temperatures. Furthermore, the Rh/TiO₂ catalyst did not exhibit any anomalously low H2 or CO chemisorption capacity, a feature commonly found in SMSI catalysts. The possibility of longrange electronic interactions, affecting the electronic structure of the Rh surface (34) must also be considered. TiO₂ is an n-type semiconductor and its n-conductivity increases in reducing conditions. The work function of reduced TiO₂ can be lower than that of Rh, leading to charge transfer from the semiconductor to the metal. However, undoped TiO2 has a small free electron concentration and the quantity of charge transferred cannot be significant enough to alter the electronic properties of the Rh crystallites. On the other hand, the possibility of localized effects at the periphery of the Rh crystallites appears rather strong. Among the carriers employed in the present investigation, TiO₂ in the only reducible oxide. Thus, the creation of new active sites at the metal-support interface or a direct interaction between Rh atoms at the periphery with reduced TiO₂ species are highly probable. This could be related to the formation of methoxy species at the periphery of the Rh particles, which then decompose to CH₄, as illustrated by Falconer and coworkers (37–41). Although this route was not detected on the present catalysts under TPR conditions, it could play an important role under steady-state hydrogenation conditions since both CO and H₂ are present on the catalyst surface, at elevated temperatures. ## SUMMARY AND CONCLUSIONS The interaction of H₂ and CO with Rh crystallites dispersed on SiO₂, Al₂O₃, and TiO₂ carriers was investigated with TPD and TPR techniques. H₂ TPD spectra consist, in general, of two peaks at 70-100°C and 160-200°C, which can be attributed to two different states of adsorbed H₂. The high-temperature peak which corresponds to strongly adsorbed H₂ increases significantly when adsorption takes place at higher temperatures. The carrier used to disperse the metal influences the relative intensity of the two peaks but not their position in the temperature scale. Comparison of the spectra obtained in this work with spectra obtained over Rh(111) surfaces implies that the carrier and possibly the Rh crystallite size influence significantly the mode of H₂ adsorption. Peak maxima were observed to shift to higher temperatures with increasing temperature of adsorption. Furthermore, the quantity of H₂ desorbed from Rh/TiO₂ was also found to increase with increasing temperature of adsorption. This has been attributed to activated adsorption, and/or increased strength of the adsorption bond and subsequently reduced H₂ desorption prior to initiation of the TPD experiments. CO TPD spectra were found to be significantly affected by the nature of the support of the Rh crystallites. Significant CO dissociation was observed over Rh/TiO₂ and to a smaller extent on Rh/Al₂O₃ but not on Rh/ SiO₂. The dissociation of CO does not seem to be directly related to the strength of the Rh-CO adsorption bond. It is proposed that the dissociation is at least partially assisted by sites at the metal-support interface. In addition to the CO dissociation process, the appearance of CO₂ has been attributed to interaction of CO with surface hydroxyl groups upon desorption of strongly adsorbed CO. A significant shift of peak temperatures towards lower values was also observed over Rh/TiO₂. The reactivity of adsorbed CO towards hydrogenation was investigated by TPR experiments and was found to be significantly affected by the nature of the carrier. Reactivity was found to decrease in the order: Rh/TiO₂ ≫ Rh/Al₂O₃ > Rh/SiO₂. The same order was observed in CO dissociation, which might imply that CO dissociation is an intermediate step in the process of CO hydrogenation. Furthermore, the same order of reactivity, with respect to the carrier employed to disperse the Rh crystallites, was observed in steady-state CO hydrogenation experiments. ### REFERENCES - Vannice, M. A., and Twu, C. C., J. Catal. 82, 213 (1983). - Erdöhelyi, A., and Solymosi, F., J. Catal. 84, 446 (1983). - Mori, Y., Mori, T., Miyamoto, A., Takamashi, N., Hattori, T., and Murakami, Y., J. Phys. Chem. 93, 2039 (1989). - Inoue, T., Iizuka, T., and Tanabe, K., Appl. Catal. 46, 1 (1989). - Boccuzi, F., Chiorino, A., Chiotti, G., Pinna, F., Strukul, G., and Tessori, R., J. Catal. 126, 381 (1990). - Yates, J. T., Thiel, P. A., and Weinberg, W. H., Surf. Sci. 84, 427 (1979). - Efstathiou, A. M., and Bennett, C. O., J. Catal. 124, 116 (1990). - 8. Bertucco, A., and Bennett, C. O., *Appl. Catal.* **35**, 329 (1987). - Apple, T. M., Gajardo, P., and Dybowski, C., J. Catal. 68, 103 (1981). - Stockwell, D. M., Bertucco, A., Coulson, G. W., and Bennett, C. O., J. Catal. 113, 317 (1988). - Yates, J. T., Williams, E. D., and Weinberg. W. H., Surf. Sci. 91, 562 (1980). - Thiel, P. A., Williams, E. D., Yates, J. T., and Weinberg, W. H., Surf. Sci. 84, 54 (1979). - Mate, C. M., and Somorjai, G. A., Surf. Sci. 160, 542 (1985). - Bertel, E., Rosina, G., and Netzer, F. R., Surf. Sci. 172, L515 (1986). - Altman, E. I., and Gorte, R. J., Surf. Sci. 195, 392 (1988). - Efstathiou, A. M., Ph.D. dissertation, University of Connecticut, 1989. - Oh, S. H., and Eickel, C. C., J. Catal. 112, 543 (1988). - Efstathiou, A. M., and Bennett, C. O., J. Catal. 120, 118 (1989); 120, 137 (1989). - Katzer, J. R., Sleight, A. W., Gajardo, P., Michel, J. B., Gleason, E. F., and McMillan, S., Faraday Discuss, Chem. Soc. 72, 121 (1982). - Solymosi, F., Tombacz, I., and Kocsis, M., J. Catal. 75, 78 (1982). - Vant Blik, H. F. J., Vis, J. C., Huizinga, T., Prins, R., Appl. Catal. 19, 405 (1985). - Taniguchi, S., Mori, T., Mori, Y., Hattosi, T., and Murakami, Y., J. Catal. 116, 108 (1989). - Levin, M. E., Salmeron, M., Bell, A. T., and Somorjai, G. A., J. Catal. 106, 401 (1987). - Braunschweig, E. J., Logan, A. D., Datye, A. K., and Smith, D. J., J. Catal. 118, 227 (1989). - Demmin, R. A., and Gorte, R. J., J. Catal. 90, 32 (1984). - Rieck, J. S., and Bell, A. T., J. Catal. 85, 143 (1984). - Ioannides, T., and Verykios, X. E., J. Catal. 120, 157 (1989). - Leary, K. J., Michaels, J. N., and Stacy, A. M., Langmuir 4, 1251 (1988). - 29. Lee, P. I., and Schwartz, J. A., J. Catal. 13, 272 (1982). - Guczi, L., in "New Trends in CO Activation" (L. Guczi, Ed.), Studies in Surface Science and Catalysis. Vol. 64, p. 351. Elsevier, Amsterdam, 1991. - Rethwisch, D. G., and Dumesic, J. A., Langmuir 73 (1986). - Fujimoto, K., Kameyama, M., and Kubugi, J., J. Catal. 61, 7 (1980). - Paul, J., Cameron, S. D., Dwyer, D. J., and Hoffmann, F. M., Surf. Sci. 177, 121 (1986). - Solymosi, F., Tombacz, I., Koszta, J., J. Catal. 95, 578 (1985). - van Santen, R. A., and de Koster, A., in "New Trends in CO Activation" (L. Guczi, Ed.), Studies in Surface Science and Catalysis, Elsevier, Amsterdam, 1991. - Kiskinova, M., in "New Trends in CO Activation" (L. Guczi, Ed.), Studies in Surface Science and Catalysis, Vol. 64, p. 37. Elsevier, Amsterdam, 1991. - Hsiao, E. C., and Falconer, J. L., J. Catal. 132, 145 (1991). - 38. Mao, T. F., and Falconer, J. L., *J. Catal.* **123**, 443 (1990). - Sen, B., and Falconer, J. L., J. Catal. 122, 68 (1990); 125, 35 (1990). - 40. Sen, B., Falconer, J. L., Mao, T. F., Yu, M., and Flesner, R. L., J. Catal. 126, 465 (1990). - 41. Chen, B., Falconer, J. L., and Chang, L., J. Catal. 127, 732 (1991). - Jackson, S. D., Brandreth, B. J., and Winstanley, D., J. Chem. Soc. Faraday Trans. 1 84, 1741 (1988). - 43. Duprez, D., Barrault, J., and Geron, C., Appl. Catal. 37, 105 (1988). - 44. Vannice, M. A., J. Catal. 74, 199 (1982).